Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(1): 111994, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36732947

RESUMO

Palmoplantar skin is structurally and functionally unique, but the transcriptional programs driving this specialization are unclear. Here, we use bulk and single-cell RNA sequencing of human palm, sole, and hip skin to describe the distinguishing characteristics of palmoplantar and non-palmoplantar skin while also uncovering differences between palmar and plantar sites. Our approach reveals an altered immune environment in palmoplantar skin, with downregulation of diverse immunological processes and decreased immune cell populations. Further, we identify specific fibroblast populations that appear to orchestrate key differences in cell-cell communication in palm, sole, and hip. Dedicated keratinocyte analysis highlights major differences in basal cell fraction among the three sites and demonstrates the existence of two spinous keratinocyte populations constituting parallel, site-selective epidermal differentiation trajectories. In summary, this deep characterization of highly adapted palmoplantar skin contributes key insights into the fundamental biology of human skin and provides a valuable data resource for further investigation.


Assuntos
Queratinócitos , Pele , Humanos , Diferenciação Celular , Mãos , Células Cultivadas , Epiderme
2.
JCI Insight ; 6(17)2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34494554

RESUMO

The migrating keratinocyte wound front is required for skin wound closure. Despite significant advances in wound healing research, we do not fully understand the molecular mechanisms that orchestrate collective keratinocyte migration. Here, we show that, in the wound front, the epidermal transcription factor Grainyhead like-3 (GRHL3) mediates decreased expression of the adherens junction protein E-cadherin; this results in relaxed adhesions between suprabasal keratinocytes, thus promoting collective cell migration and wound closure. Wound fronts from mice lacking GRHL3 in epithelial cells (Grhl3-cKO) have lower expression of Fascin-1 (FSCN1), a known negative regulator of E-cadherin. Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) on wounded keratinocytes shows decreased wound-induced chromatin accessibility near the Fscn1 gene in Grhl3-cKO mice, a region enriched for GRHL3 motifs. These data reveal a wound-induced GRHL3/FSCN1/E-cadherin pathway that regulates keratinocyte-keratinocyte adhesion during wound-front migration; this pathway is activated in acute human wounds and is altered in diabetic wounds in mice, suggesting translational relevance.


Assuntos
Proteínas de Transporte/genética , Adesão Celular/genética , Proteínas de Ligação a DNA/genética , Epiderme/lesões , Regulação da Expressão Gênica , Proteínas dos Microfilamentos/genética , RNA/genética , Fatores de Transcrição/genética , Cicatrização , Animais , Proteínas de Transporte/biossíntese , Linhagem Celular , Movimento Celular/genética , Proteínas de Ligação a DNA/biossíntese , Modelos Animais de Doenças , Epiderme/metabolismo , Epiderme/patologia , Queratinócitos/metabolismo , Camundongos , Proteínas dos Microfilamentos/biossíntese , Fatores de Transcrição/biossíntese
3.
J Invest Dermatol ; 141(8): 1881-1884, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34303468

RESUMO

Regulatory regions of the genome harbor most genetic variance associated with skin diseases. Because gene-regulatory networks are cell-type and cell-state specific and are subject to variation from the genetic background, current cell models that link genetic variation to gene expression are imperfect. Emerging single-cell genomics approaches may provide a new approach to understand the genetics of common skin diseases.


Assuntos
Psoríase , Dermatopatias , Redes Reguladoras de Genes , Genômica , Humanos
4.
Dev Cell ; 52(6): 764-778.e4, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-32109382

RESUMO

The fusion of digits or toes, syndactyly, can be part of complex syndromes, including van der Woude syndrome. A subset of van der Woude cases is caused by dominant-negative mutations in the epithelial transcription factor Grainyhead like-3 (GRHL3), and Grhl3-/-mice have soft-tissue syndactyly. Although impaired interdigital cell death of mesenchymal cells causes syndactyly in multiple genetic mutants, Grhl3-/- embryos had normal interdigital cell death, suggesting alternative mechanisms for syndactyly. We found that in digit separation, the overlying epidermis forms a migrating interdigital epithelial tongue (IET) when the epithelium invaginates to separate the digits. Normally, the non-adhesive surface periderm allows the IET to bifurcate as the digits separate. In contrast, in Grhl3-/- embryos, the IET moves normally between the digits but fails to bifurcate because of abnormal adhesion of the periderm. Our study identifies epidermal developmental processes required for digit separation.


Assuntos
Movimento Celular , Proteínas de Ligação a DNA/genética , Células Epiteliais/metabolismo , Membro Anterior/embriologia , Sindactilia/genética , Dedos do Pé/embriologia , Fatores de Transcrição/genética , Animais , Células Epiteliais/fisiologia , Membro Anterior/anormalidades , Membro Anterior/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Morfogênese , Dedos do Pé/anormalidades
5.
J Biol Chem ; 292(46): 18937-18950, 2017 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-28916725

RESUMO

During tissue development, transcription factors bind regulatory DNA regions called enhancers, often located at great distances from the genes they regulate, to control gene expression. The enhancer landscape during embryonic stem cell differentiation has been well characterized. By contrast, little is known about the shared and unique enhancer regulatory mechanisms in different ectodermally derived epithelial cells. Here we use ChIP sequencing (ChIP-seq) to identify domains enriched for the histone marks histone H3 lysine 4 trimethylation, histone H3 lysine 4 monomethylation, and histone H3 lysine 27 acetylation (H3K4me3, H3K4me1, and H3K27ac) and define, for the first time, the super enhancers and typical enhancers active in primary human corneal epithelial cells. We show that regulatory regions are often shared between cell types of the ectodermal lineage and that corneal epithelial super enhancers are already marked as potential regulatory domains in embryonic stem cells. Kruppel-like factor (KLF) motifs were enriched in corneal epithelial enhancers, consistent with the important roles of KLF4 and KLF5 in promoting corneal epithelial differentiation. We now show that the Kruppel family member KLF7 promotes the corneal progenitor cell state; on many genes, KLF7 antagonized the corneal differentiation-promoting KLF4. Furthermore, we found that two SNPs linked previously to corneal diseases, astigmatism, and Stevens-Johnson syndrome fall within corneal epithelial enhancers and alter their activity by disrupting transcription factor motifs that overlap these SNPs. Taken together, our work defines regulatory enhancers in corneal epithelial cells, highlights global gene-regulatory relationships shared among different epithelial cells, identifies a role for KLF7 as a KLF4 antagonist in corneal epithelial cell differentiation, and explains how two SNPs may contribute to corneal diseases.


Assuntos
Diferenciação Celular , Elementos Facilitadores Genéticos , Epitélio Corneano/citologia , Regulação da Expressão Gênica , Fatores de Transcrição Kruppel-Like/metabolismo , Acetilação , Linhagem Celular , Imunoprecipitação da Cromatina , Doenças da Córnea/genética , Doenças da Córnea/metabolismo , Epitélio Corneano/metabolismo , Histonas/metabolismo , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Polimorfismo de Nucleotídeo Único , Células-Tronco/citologia , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA